New insights into ice growth and melting modifications by antifreeze proteins
نویسندگان
چکیده
Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly defined facets, while hyperactive AFPs produce more varied crystal shapes. These different morphologies are generally considered to be growth shapes. In a series of bright light and fluorescent microscopy observations of ice crystals in solutions containing different AFPs, we show that crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping mechanisms of most moderate and hyperactive AFPs. This study provides key aspects associated with the identification of hyperactive AFPs.
منابع مشابه
Superheating of ice crystals in antifreeze protein solutions.
It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hou...
متن کاملAnimal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce ...
متن کاملA two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs), collectively abbreviated as AF(G)Ps, are synthesized by various organisms to enable their cells to survive in subzero environments. Although the AF(G)Ps are markedly diverse in structure, they all function by adsorbing to the surface of embryonic ice crystals to inhibit their growth. This adsorption results in a freezing temperatu...
متن کاملAntifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition
Antifreeze proteins (AFPs), which are present in the bodily fluids of organisms inhabiting cold environments, function as inhibitors of ice growth by binding to certain planes of ice crystals. However, the exact mechanism of ice growth inhibition is still poorly understood as it is exceedingly difficult to experimentally analyze the molecular-scale growth kinetics of ice crystals at the planes ...
متن کاملDirect visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity.
Antifreeze proteins (AFPs) protect certain organisms from freezing by adhering to ice crystals, thereby preventing their growth. All AFPs depress the nonequilibrium freezing temperature below the melting point; however AFPs from overwintering insects, such as the spruce budworm (sbw) are 10-100 times more effective than most fish AFPs. It has been proposed that the exceptional activity of these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2012